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Abstract
The Hubbard model on line graphs has a flat band and highly degenerate
ferromagnetic ground states. Here, we study the Hubbard model on a
line graph of a planar bipartite graph by adding a special contribution to the
kinetic energy which lifts the degeneracy of the lowest single particle state to a
general Hamiltonian. We prove that, at half-filling of the lowest band and for
sufficiently strong repulsion U, the ground states of this Hamiltonian remain
saturated ferromagnetic for a class of line graphs of planar bipartite graphs.

PACS numbers: 05.50.+q, 71.10.Fd

1. Introduction

The origin of ferromagnetism has been an old and not yet solved problem in physics for
quite a long time. A modern version of the mechanism for itinerant electron ferromagnetism
is formulated by Kanamori [1] and Hubbard [2]. The model is usually called the Hubbard
model, which established the generation of ferromagnetism in some simplified situations.
Unfortunately, due to the complexity of the Hubbard model, rigorous results are singular,
which have infinite repulsive Coulomb interaction [3] or in which there exists a dispersionless
band generating magnetization [4] and the flat-band ferromagnetism formulated by Mielke
[5] and Tasaki [6]. It was often argued that the flatness of the band in the flat-band model is
artificial and that flat bands do not occur in nature; therefore, the next important step toward
the understanding of ferromagnetism is to show the stability of the flat-band ferromagnetism
against the perturbation breaking of the flatness of the band. Tasaki himself has successfully
proved the stability of the flat-band ferromagnetism in rather general situations for his models
[7, 8]. The main problem in Tasaki’s model is that there is a large band gap between the lowest
nearly flat band and the higher bands. Since the lowest band is half-filled and the Coulomb
interaction U is large, one might have a Mott insulator in that case. As for Mielke’s models,
only the stability of the flat-band ferromagnetism on the kagomé lattice was established by
Tanaka and Ueda [9].
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In this paper, we study the stability of ferromagnetism in the Hubbard model on the
line graphs of planar bipartite graphs in two dimensions. We add a special perturbation to
the hopping parts of the Hamiltonian to get a dispersion band and show the stability of the
flat-band ferromagnetism on them. The kagomé lattice discussed in [9] is a special case in
this larger class of lattices. This paper is organized as follows. In section 2, we give some
definitions and state our main theorem. The proof of the theorem and some discussions are
given in section 3.

2. Definitions and result

2.1. Definitions

Let us first introduce some definitions and properties concerning the line graphs of planar
bipartite graphs. We use the notation in [11].

A graph is a collection of vertices and the edges between them and will be denoted
by G = (V ,E), where V is the set of vertices and E is the set of edges. |V | is the
number of vertices and |E| is the number of edges. A walk of length n − 1 is a sequence
c = {x1, e1, x2, e2, . . . , en−1, xn}, where ei is an edge joining xi and xi+1. A path is a self-
avoiding walk and a cycle is a self-avoiding closed walk.

Let G be a bipartite planar 2-connected graph. G is said to be bipartite if the vertices
of G can be divided into two disjoint sets V1 and V2 such that each edge joins a vertex from
V1 to V2. In a bipartite graph, the length of each cycle is even. G is said to be 2-connected
if no edge exists such that the graph decays into two unconnected subgraphs if this edge is
deleted from G. In a 2-connected graph, each edge is contained in a cycle. A planar graph has
a representation in the plane as a set of points and lines so that there are no lines intersecting
each other.

The edges and vertices of a planar graph divide the plane into a set of connected
components, called faces. Each plane graph has exactly one unbounded face. Let F(G)

be the set of bounded faces of G. One has |F(G)| = |E(G)| − |V (G)| + 1 due to the Euler
theorem. The boundary of each bounded face f is called a facial cycle.

The line graph L(G) has the edges of G as vertices and two vertices are connected by an
edge, if the corresponding edges in G have a vertex in common. For instance, one may take
the hexagonal lattice (or a finite part of it, e.g., with periodic boundary conditions). The line
graph of it is the kagomé lattice. It is a planar graph. Another example is the line graph of the
square lattice with periodic boundary conditions. This graph may be represented by a regular
lattice of corner-sharing tetrahedra. Note that this graph is not planar.

We define the adjacency matrix of the graph G to be the matrix A = (axy)x,y∈V (E) where
axy = 1 if the two vertices are adjacent and axy = 0 otherwise. Further, the vertex-edge-
incidence matrix is defined by B = (bxe)x∈V (G),e∈E(G). bxe = 1 if vertex x belongs to edge e
and bxe = 0 otherwise. The face-edge-incidence matrix is defined by B̃ = (b̃f e)f ∈F(G),e∈E(G).
b̃f e = 1 if edge e belongs to the boundary of f and b̃f e = 0 otherwise. The number of
edges of the boundary of f is nf = ∑

e∈E b̃f e. Since the graph is bipartite, nf is even. The
vertex-face-incidence matrix is defined by C = (cxf )x∈V (G),f ∈F(G). cxf = 1 if the vertex
x belongs to the face f and cxf = 0 otherwise. One has cxf = 1

2

∑
e∈E(G) b̃f ebxe. We

let dx = ∑
f ∈F(G) cxf and D = diag(dx). dx is the number of bounded faces touching the

vertex x.
Since G is bipartite with vertex sets V1 and V2, each edge in G may be oriented from

V1 to V2. Furthermore, the facial cycle of f will be oriented clockwise. We now define
S = (sf e)f ∈F(G),e∈E(G), where sf e = 1 if f contains e, e and the facial cycle of f has the same
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orientation. sf e = −1 if f contains e, e and the facial cycle of f has the opposite orientation.
sf e = 0 otherwise.

The adjacency matrix AL of a line graph L(G) has the form

AL = BT (G)B(G) − 2I, (1)

where BT is the transposition of B and I denotes the unit matrix. The lowest eigenvalue of
AL is −2. Since BT (G)B(G) is a positive-semidefinite matrix, it follows from (1) that each
eigenvalue aL of the adjacency matrix AL obeys aL � −2. Each element of the kernel of
B(G) is an eigenstate to this eigenvalue. One has further in the graph theory

∑
e bxesf e = 0.

It means that the columns of ST forms a basis of the kernel of B. Furthermore, the dimension
of the kernel of B is |F(G)|. This number is thus the multiplicity of the eigenvalues −2 of AL.

2.2. The Hamiltonian

Let us now define the Hubbard model on L(G). The Hamiltonian of the Hubbard model on a
graph G has the form

H =
∑

e,e′∈E(G),σ

tee′c†eσ ce′σ +
∑

e∈E(G)

Une↑ne↓, (2)

where

tee′ = t
∑

x∈V (G)

bxebxe′ −
∑

f ∈F(G)

sf

nf

sf esf e′ . (3)

Let us first make some notes.

• We assume that t > 0, sf > 0 and U > 0. c
†
eσ and ceσ are the usual creation and the

annihilation operators of an electron on the vertices of L(G), respectively. They satisfy
the fermion anticommutation relations. The number operator for the electrons on an edge
e with the spin σ is defined as neσ = c

†
eσ ceσ . N = ∑

eσ neσ is the number of electrons.
We consider many-electron states with the total electron number fixed at |F(G)|. The
present number corresponds to the half-filling of the lowest band.

• The first part of the Hamiltonian describes the hopping of electrons on L(G) and the
second part is the on-site repulsive Coulomb interaction. The first part of tee′ is the usual
nearest-neighbor hopping on L(G) plus an additional term 2tδee′ . The lowest eigenvalue
of

∑
x bxebxe′ is zero. If we set sf = 0, we get the flat-band ferromagnetism.

• The second added term of tee′ changes the flat lowest band into a dispersive band and
thus lifts the degeneracy of the lowest eigenvalue of

∑
x bxebxe′ , but it does not change

the other eigenvalues. The added term is negative semi-definite; all eigenvalues which
are 0 for sf = 0 become non-positive. It can also be written as H1 = −sf

∑
f σ d

†
f σ df σ ,

where d
†
f σ = n

−1/2
f

∑
e sf ec

†
eσ . Since the corresponding single particle states are not

orthogonal, s̃ff ′ = {
df σ , d

†
f ′σ

} = (nf nf ′)−1/2 ∑
e,e′ sf esf ′e′ is not a diagonal matrix. Let

SF = diag(sf ) and S̃ = (s̃fg)f,g∈F(G). Then the single particle spectrum of H1 is given
by the spectrum of the matrix −√

SF S̃
√

SF .

2.3. The theorem

We investigate the line graphs of planar bipartite graphs. The lattices are characterized by nf .
Since the graph is bipartite, nf is even. We assume that the coordination number d = 3 is
fixed. This means that every vertex belongs to three edges; two of them are the boundary of a
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(a) (b)

Figure 1. Examples for planar bipartite graphs with a fixed coordination number 3.
(a) Quadrangles. (b) Octagons.

face f and we will call the third one the outer edge of f . The regular graph G consisting of
quadrangles and octagons is a good example in our model (figure 1).

We can now state our main theorem.

Theorem. Let G be a bipartite planar 2-connected graph and assume that, for each vertex
x ∈ V (G),

∑
e∈E(G) bxe equals 3 if x is included in a facial cycle of a bounded face of G

and 1 otherwise. Furthermore, we assume nf � 10 for each bounded face f of G. Consider
the Hubbard model on a 2-connected planar line graph L(G) with the electron number
N = |F(G)|. Then, for sufficiently large t > tc and U > Uc, both independent of the lattice
sites and finite in the thermodynamic limit, the ground state of the Hamiltonian (2) is fully
polarized S = N

2 . Furthermore, the ground state is unique up to the 2S + 1-fold degeneracy
due to the SU(2) symmetry.

Remarks.

• We note the following essential difference between our model and Tasaki’s models [8, 10]:
there are no band gaps in our model while there are finite or infinite band gaps in Tasaki’s
models, which lead to the Mott insulator or metallic ferromagnetism, respectively. In
[10] the conductivity is due to the electrons in the higher band, which is partially filled,
are movable and are coupled ferromagnetically to the electrons in the lower band. In our
model, the fact that the single particle eigenstates are an extended state and that the Fermi
surface does not lie in a band gap imply this model is also a candidate for a ferromagnetic
metal.

• It can be proved that the model with a nonflat band exhibits Pauli paramagnetism for U = 0
and can be strongly believed that, for sufficiently small U, the ground states of the model
are spin singlet. Therefore, one must have sufficiently large U to get ferromagnetism.

• The proof of the theorem makes use of the fact that the columns of ST form a basis
of the kernel of B. One might expect that it should be possible to extend this result to
N < |F(G)|. But a simple generalization of the theorem is not possible. The reason
is that we show H � −∑

f sf for sufficiently large U and t together with the fact that

the ferromagnetic state
∏

f d
†
f ↑|0〉 has the energy −∑

f sf . Since the state d
†
f σ |0〉 is

local, but the single particle ground states of H are not local, therefore it is not possible
to express the ferromagnetic eigenstates of H with lowest energy by local operators for
N < |F(G)|.
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(a) (b)

Figure 2. Subgraph gf . (a) nf = 8. (b) nf = 10.

• It is not possible to easily generalize the result to high dimensional lattices. The reason
is that one can construct a basis using small cycles on G, similar to the boundaries of the
faces of the planar graph, but the number of small cycles is much larger than the number
of single particle ground states. As a consequence, the bounds we use in the proof do not
hold.

3. Proof of the theorem

Since the case nf = 4, 6 can be dealt with through the method of Tanaka and Ueda, the
remaining task to prove the above theorem is to investigate the cases nf = 8, 10.

To prove the theorem, we first establish ferromagnetism in a local model described by Hf

and then show that this local ferromagnetism can be connected. The Hamiltonian H can then
be written as a sum of local Hamiltonians H = ∑

f ∈F(G) Hf , where

Hf = Hf,1 + Hf,2 + Hf,3 (4)

with

Hf,1 = − sf

nf

∑
e,e′∈E(G),σ

sf ec
†
eσ sf e′ce′σ (5)

Hf,2 = t
∑

x∈V (G)

cxf

dx

∑
e,e′∈E(G),σ

bxec
†
eσ bxe′ce′σ (6)

Hf,3 =
∑

x∈V (G)

cxf

2dx

∑
e∈E(G)

bxeUne↑ne↓. (7)

Let gf be a subgraph (figure 2) consisting of a facial cycle and outer edges of a bounded
face of f . We consider the eigenvalue problem corresponding to the Hamiltonian Hf restricted
on the line graph L(gf ) of gf .

In the limit t = ∞ and U = ∞,Hf,2 � 0 (6) means that the single Hilbert space is
restricted to single particle states with Hf,2� = 0. If we define 2nf × 2nf matrices Bf and
Cf as

Bf = (bxe)x∈V (gf ),e∈E(gf ) (8)

and

Cf = diag(cxf )x∈V (gf ), (9)
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respectively, then Hf,2 restricted on L(gf ) is equivalent to the matrix

Hf,2 = tBT
f Cf D−1Cf Bf . (10)

Then, the kernel of Hf,2 is the kernel of Cf Bf . It is easy to check that the rank of Cf Bf is nf

and thus the dimension of the kernel of Cf Bf (Hf,2) is also nf .
We introduce our basis states. We number the outer edges of f as e1, . . . , enf

. We let the
path pi start at ei and end at ei+1 (we denote nf + 1 = 1). The path is oriented. Now we let
φi(e) = 1 if e belongs to pi and has the same orientation as pi, φi(e) = −1 if e belongs to pi

and has the opposite orientation, and φi(e) = 0 if e does not belong to pi . Obviously, the nf

states we constructed are linearly independent and nonorthogonal. Furthermore, they form a
basis of the kernel of Hf,2 (6).

We define fermion operators by using the above-defined states aiσ = ∑
e∈E(G) φi(e)ceσ .

Let � be a multi-particle state which is an eigenstate of Hf,2 with eigenvalue 0 in the limit
U, t = ∞. It can be expanded as

� =
∑

I↑,I↓⊂I

g(I↑; I↓)�(I↑; I↓) (11)

with complex coefficients g(I↑; I↓), where

�(I↑; I↓) =
∏
p∈I↑

a
†
p↑

∏
p′∈I↓

a
†
p′↓�0. (12)

�0 is a state with no electrons. We denote I = {1, 2, . . . , nf }. Since the on-site interaction
U = ∞, any ground state � must further satisfy∑

I↑,I↓⊂I

g(I↑; I↓)ce↑ce↓�(I↑; I↓) = 0. (13)

The advantage of using this kind of basis is that the finite energy condition (13) can be
considered explicitly. This means that we can select the states which satisfy (13) exactly and
evaluate numerically the minimum energy of the states.

We first solve the 2-electron problem. Since the local spin operators

S ′
z = 1

2

∑
e∈E(gf )

(ne↑ − ne↓), S ′
+ =

∑
e∈E(gf )

c
†
e↑ce↓, S ′

− =
∑

e∈E(gf )

c
†
e↓ce↑ (14)

and

S ′2 = 1
2 (S ′

+S
′
− + S ′

−S ′
+) + S ′2

z (15)

commute with Hf,2, S
′2 and S ′

z are conserved. We work in the S ′
z = 0 subspace since all

competitors have a representative there. This is to say that each eigenstate with a given S ′
z can

be rotated in a spin space to a state with S ′
z = 0 without changing its energy. Then a 2-electron

state with S ′
z = 0 can be written as

�2 =
∑
i,j∈I

gij a
†
i↑a

†
j↓�0 (16)

with gij as coefficients.
The finite energy condition (13) is given by

gii = 0, gi,i±1 + gi±1,i = 0, ∀ i ∈ I. (17)

The energy expectation value of �2 is

E2 = 〈�2|Hf |�2〉
〈�2|�2〉 = − sf

nf

· 2
∑nf

i,j,k,l=1 g�
ij gkl(−1)i+kAjl∑nf

i,j,k,l=1 g�
ij gklAikAjl

(18)

with Aij = 3δij + δi,j+1 + δi,j−1 (we denote nf + 1 = 1).

6



J. Phys. A: Math. Theor. 42 (2009) 265002 L Lu

We numerically evaluate the minimum energy (18) within the constraints (17) and the
normalization condition

nf∑
i,j,k,l=1

g�
ij gklAikAjl = 1. (19)

The result shows that the minimum energy Emin = −sf for nf � 10.
It is noted that Emin < −sf for nf � 12. This shows the instability of ferromagnetism

on the local graph with nf � 12. However, the instability of ferromagnetism on the local
graph does not imply that on the entire graph in general. This means that the prove strategy
by using the local Hamiltonian Hf is not suitable to estimate the stability of the flat-band
ferromagnetism on line graphs with nf � 12. A new prove method is needed to study the
stability of ferromagnetism on them.

Now assume that �n = ∑
I↑,I↓⊂I g(I↑; I↓)�(I↑; I↓) is an n-electron state with |I↑|+|I↓| =

n. The energy expectation value is expressed as

En = 〈�n|Hf |�n〉
〈�n|�n〉 (20)

with

〈�n|Hf |�n〉 = − sf

nf

∑
I↑,I↓,I ′

↑,I ′
↓⊂I

g(I↑; I↓)g(I ′
↑; I ′

↓)

( ∑
x∈I↑,y∈I ′

↑

〈
�

(
I

′y
↑ ; I ′

↓
)∣∣�(

I x
↑ ; I↓

)〉

+
∑

x∈I↓,y∈I ′
↓

〈
�

(
I ′
↑; I

′y
↓

)∣∣�(
I↑; I x

↓
)〉)

(21)

and

〈�n|�n〉 =
∑

I↑,I↓,I ′
↑,I ′

↓⊂I

g(I↑; I↓)g(I ′
↑; I ′

↓)〈�(I ′
↑; I ′

↓)|�(I↑; I↓)〉. (22)

Furthermore, we find the finite energy conditions (13) for �n:

g
(
I i
↑; I i

↓
) = 0, ∀ i ∈ I. (23)

g
(
I i
↑; I i ′

↓
)

+ g
(
I i ′
↑ ; I i

↓
) = 0, if aii ′ = 1, (24)

where aii ′ = 1 if i = i ′ ± 1 and 0 otherwise. Here, we abbreviate Iσ ∪ {p} as I
p
σ for p ∈ I .

Together with the normalization condition 〈�n|�n〉 = 1, the minimum energy for all possible
number of electrons and corresponding spin configurations is evaluated numerically. The
result shows that Emin = −sf for all �n with nf = 8, 10.

Thus, we can conclude that Emin = −sf for any � in the case nf = 8, 10. One finds that
such � with Emin = −sf indeed exists by testing

� = d
†
f ↑�+ + d

†
f ↓�− (25)

with d
†
f σ = 1√

nf

∑
i (−1)ia

†
iσ , and �± are build by linear combinations of products of a

suitable number of a
†
iσ . � satisfies further the finite energy condition (13). We point out that

a state which contains terms with doubly occupied d
†
f,σ is not a lowest energy state in the limit

t, U = ∞. This can be seen as follows.
Let �n,s be a general n-electron state with S ′

z = s:

�n,s =
∑

I↑,I↓⊂I,|I↑|−|I↓|=s,|I↑|+|I↓|=n

g(I↑; I↓)
∏
p∈I↑

a
†
p↑

∏
p′∈I↓

a
†
p′↓�0, (26)

7
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Table 1. The ground-state energy in different S′ sectors (unit sf ).

Electron number S = Sz

Ne 0 1/2 1 3/2 2 5/2 3

3 – −0.81 – −1 – – –
4 −0.65 – −0.81 – −1 – –
5 – −0.67 – −0.81 – −1 –
6 −0.54 – −0.65 – −0.81 – −1

where g(I↑; I↓) is a coefficient and �0 is a state with no electrons. We use the S ′
+ operator to

project �n,s into the sector S ′ = S ′
z:

S ′
+�n,s =

∑
e∈E(G)

c
†
e↑ce↓�n,s = 0. (27)

We then obtain a necessary condition for g(I↑; I↓) and together with the finite energy (13)
and the normalization condition, suitable states �n,s can be selected and the minimum energy
will be evaluated numerically. The results for the cases nf = 8 are listed in table 1. It shows
that a state with large S ′ has lower energy. It also implies that a state which contains terms
with doubly occupied d

†
f,σ with S ′ = 0 has higher energy; therefore, it could not be a lowest

energy state. Thus, any lowest energy state in the limit t, U = ∞ can be written in form (25).
Furthermore, there exist energy gaps between the ground states of different S ′ sectors.

This demonstrates the robustness of the ferromagnetism under the spin-flip process and verifies
the theorem formulated by Mielke [13] that local stability implies the global stability.

The continuity of energy implies that such � (25) is also the lowest energy state of Hf

for sufficiently large but finite U and t as well. On the other hand, the critical values of U and
t do not change when one tends to the thermodynamic limit and are independent of the size
of G.

The theorem is a consequence of the above result. We assume that the value of U and t
are large enough to hold the above statement. One has H � −∑

f ∈F(G) sf = −Nsf . We
now consider a fully polarized state

�f =
∏

f ∈F(G)

d
†
f ↑�0. (28)

The operator d̃gσ = ∑
f (S̃−1)gf df σ is the dual operator to df σ . We have

{
d̃f σ , d

†
gσ

} = δfg

and hence we obtain

Hf,1�f = −
∑

f ∈F(G)

sf d
†
f ↑df ↑�f

= −
∑

f,g∈F(G)

sf s̃fgd
†
f ↑d̃g↑�f

= −
∑

f ∈F(G)

sf s̃ff �f

= −
∑

f ∈F(G)

sf �f

= −Nsf �f . (29)

This shows that for sufficiently large U and t, the fully polarized state �f and its SU(2)

rotations are the ground states of H (2).

8
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(a) (b)

Figure 3. Quadratic lattice (a) and its line graph (b).

The proof of the uniqueness of �f can be easily carried over from [12], since both
operators Hf,1 and Hf,2 are commutative. This completes the proof of the theorem.

The stability of the ferromagnetic state on the line graph of a quadratic lattice (figure 3),
which is a regular lattice of corner-sharing tetrahedra, can be also estimated by using a similar
method discussed above, although its line graph is not planar.

We define our basis states on a local face f as follows. We number the outer edges as
e1, . . . , e8 and let pi be the path that starts at ei , ends at ei+1 and runs clockwise around f .
We denote I1 = {1, 4, 5, 8} and I2 = {2, 3, 6, 7} as two subsets of I = {1, . . . , 8}. We let
φi(e) = 1, i ∈ I1, and φi(e) = −1, i ∈ I2, if e belongs to the path pi and has the same
orientation as pi , and φi(e) = −1, i ∈ I1, and φi(e) = 1, i ∈ I2, if e belongs to the path pi

and has opposite orientation to pi . φi(e) = 0, i ∈ I , if e does not belong to pi .
By using this kind of basis states together with the finite energy condition, the following

evaluation shows that the minimum energy E = −sf for sufficiently strong repulsion U,
which establishes the stability of the ferromagnetism on it. The proof of the uniqueness of the
ground state can be carried from the proof of the bipartite graph without any changes.

4. Summary

We have been able to establish the stability of ferromagnetism by adding a special contribution
to the kinetic energy which lifts the degeneracy of the lowest band on the line graphs of planar
bipartite graphs with nf � 10. The electron number we have chosen corresponds to the half-
filling of the lowest nearly flat band. From the standard band-theoretic point of view, an electron
system with such a filling becomes metallic. Due to the non-degeneracy of the band, no band
gap and the extended single particle eigenstates, our model is a good candidate for metallic
ferromagnetism. However, when we recall the Mermin–Wagner theorem, in dimensions one
or two, ferromagnetism is inevitably destroyed by infinitesimally small thermal fluctuation.
Therefore, in order to have ferromagnetism stable at finite temperatures, we must treat models
in three dimensions. This is the next step toward understanding the origin of ferromagnetism.
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